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EXTENSIONS OF THE GAUVIN—TOLLE OPTIMAL VALUE DIFFERENTIAL
STABILITY RESULTS TO GENERAL MATHEMATICAL PROGRAMS

by

Anthony  V. Fiacco 
*William P. Hutzler

Abstract

Gauvin and Tolle have obtained bounds on the direc tional deriva-
tive limit quotient of the optimal value func tion for mathematical
programs containing a right—hand side perturbation. In this paper ,
we extend the results of Gauvin and Tolle to the general mathematical
program in w’uich a parameter appears arbitraril y in the constraints
and in the objective function. An implicit function theorem is
app lied to transform the general mathematical program to a locally
equivalent inequality constrained program , and , under conditions
used by Gauvin and Tolle, their upper and lower bounds on the optimal

0 value function directional derivative limit quotient are shown to -

pertain to this reduced program . These bounds are thes shown to apply
In programs having both inequality and equality constraints where a

• parameter may appear anywhere in the program.

0 
*The Rand Corporation , Washington , D.C.
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EXTENS IONS OF THE GAUVIN—TOLLE OPTIMAL VALUE DIFFERE NTIAL
STAB ILITY RE SULTS TO GENERAL MATHEMATI CAL PRO GRAMS

by

Anthony V. Fiacco
Wi lliam P. Hutzler

1. Introduction
0 ’ The sensitivity of the optimal value function of a mathematical

program to perturbations of the prob lem parameters has been addressed

by a number of authors . Using point—to—set maps , Berge [4] derived
I 

conditions sufficient for the semi—continuity of the optimal value

function for programs with constraint set perturbations, and provided

0 a general framework for some of the earliest work on the variation of

the “perturbation function,” i.e., the optimal objective function 0

I I
I value, with changes in a parameter appearing in the right—hand side of

the constraints. Evans and Gould [fl gave conditions guaranteeing the

continuity of the perturbation function when the constraints are func—

• tional inequalities. Greenberg and Pierskalla [13] extended the work

of Evans and Gould to obtain results for general constraint perturba—

- 
tions and obtained some initial results for programs with equality con—

O strainta. In [15], Hogan established conditions sufficient for the

- continuity of the perturbation function of a convex program , and in

[16) gave conditions implying the continuity of the optimal value
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function of a non—convex program when a parameter appears in the objec-

tive function.

The first— and second—order variation of the optimal value of a

general nonlinear program under quite arbitrary parametric perturba-

tions has been investigated by Hogan [15], Armacost and Fiacco [1,2,3 ] ,

Fiacco [ 9 ] ,  and Fiacco and McCormick [10]. In [2] the optimal value

function is shown, under strong conditions, to be twice continuously

differentiable, with respect to the problem parameters, with its

parameter gradient (Hessian) equal to the gradient (Hessian) of the

Lagrangian of the problem. Armacost and Fiacco [1] have also obtained

first— and second—order expressions for changes in the optimal value

function as a function of right—hand side perturbations.

A number of results relating to the differential stability of

the optimal value function have also been obtained , generally associ—

ated with the existence of directional derivatives or bounds on the

directional derivative limit quotient. Danskin [5,6]  prov ided one of

the earliest characterizations of the differential stability of the

optimal value function of a mathematical program. Addressing the

problem minimize f(x,c) subject to xcS, S some topological space,

c in Ek, Danskin derived conditions under which the directional de—

rivative of f* exists and also determined its representation. This

readt has wide applicability in the sense that the constraint space,

S, can be any compact topological space. However, the result is re-

stricted to a constraint set that does not vary with the parameter

c. For the special case in which S is defined by inequalities in—

volving a parameter , g1(x ,c) > 0 for i 1,... ,m, where f is convex

— 2 -
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and the are concave on S, Hogan [15] has given conditions that imply

that the directional derivative of f* exists and is finite in all

directiofls.

For programs without equality constraints, Robinson [20] has

shown that, under certain second—order conditions, the optimal value

function satisfies a stability of degree two. Under this stability

property , bounds on the directional derivative of f* can be derived .

Fc
~
r convex programming problems, Gol’stein [12] has shown that a saddle

point condition is satisfied by the directional derivative of f*~

f Gauvin and Tolle [11], not assuming convexity , but limiting their

analysis to right—hand side perturbations , extended the work of

Gol’stein and provide sharp upper and lower bounds on the directional
‘I

derivative limit quotient of f*, assuming the Mangasarian—Fromovitz

constraint qualification and without requiring the existence of

second—order conditions. Sensitivity results for infinite dimen—

stonal programs have recently been obtained by Maurer [18,19], who

developed a representation for the directional derivative of the sub—

gradient of the optimal value function of such problems.

The purpose of this paper is to extend the work of Gauvin and

Tolle to the general mathematical program in which a parameter appears

arbitrarily in the constraints and the objective function. For this

problem we obtain the Gauvin—Tolle upper and lower bounds on the

directional derivative limit quotient of the optimal value function.

L.. The mode of proof closely parallels tha t given by Gauvin and Tolle [11].
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2. Notation and Definitions

In this paper we shall be concerned with mathematical programs

of the form :

O mm f(x,t) P(c)

s.t. g~(x,c) > 0 (i1 ,...,m), h~(x 1c) = 0 ( j 1 , . . . , p ) ,

where xcE~ is the vector of decision variables, c is a parameter vector

in Ek, and the functions f, g
~ 

and h . are once continuously differen-

tiable on E” x E1~. The feasible region of problem P(c) will be denoted

R(c) and the set of solutions S(c). The rn—vector whose components

• 

are g~(x,c), i = l,...,m, and the p—vector whose components are

h (x,c), j = 1,. ..,p, will be denoted by g(x,c) and h(x,c), respec—
• 

~
• , 

j

tive].y.

Following usual conventions the gradient, with respect to x, of
S k la once differentiable real—valued function f:E~xE ~E is denoted

v
~
f(x,c) and is taken to be the row vector [3f(x ,c)/ax1,...,~ f(x,c)fax].

If g(x ,c) is a vector—valued function, g:EmxEk~,.E
m
, whose components

g
~
(x,c) are differentiable in x, then V~g(x,c) denotes the in x n Jacobian

matrix of g whose ith row is given by V~g1
(x ,c), i = 1,... ,rn. The trans-

pose of the Jacobian V~g(x,c) will be denoted V ’g(x,c). Differentiation

• with respect to the vector r is denoted in a completely analogous fashion.

Henceforth, we do not distingtiish between row and column vectors in this

paper; their use should be clear from the context in which they are applied.

The Lagrangian for P(c) will be written

__________ —— 

L(x,p,w,c) f (x ,c) 

r 

1~ 1
Ii1g1(x,c)+ ~~ 

w~h~(x~c)~

—-— —.—- — — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . .  U-—— — _~~~~~~~~~-~---
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and the set of Kuhn—Tucker vectors corresponding to the decision vec-

tor x will be given by

K(x,c) Cl {(U,~ )CE
mxEp:V L(x,~~,~~,c) = 0, > 0, 

~
i
~
gj(x ,c) = 0, i=1,...,m).

Writing a solution vector as a function of the parameter c , the index

set for inequality constraints which are binding at a solution x(c) is

denoted by B( c) {i:g
1
(x(c),c) 0). Finally, the optinal value

function will be defined as

f *(c)  = mm {f(x,c):xcR(c)).

Throughout this paper we shall make use of the well known

Mangasarian—Fromovitz Constraint Qualification (MFCQ) which holds at

at point xcR(c) if:

n
1) there exists a vector ycE such that

V g
1
(x,c) j~ > 0 for I such that g1(x ,c) Cl 0 and (2.1)

V h ~ (x~c) 
‘
~i = 0 for j=l,... ,p; and (2.2)

ii) the gradients V
~
hj(xi c)~ 

j l ,... ,p, are linearly

independent.

We will also have occasion to make use of the notions of semi—

continuity for both real—valued functions and point—to—set maps.

There are several equivalent definitions for these properties. The

ones most suited to our purpose are given below. The reader inter-

ested in a more complete development of these properties is referred

to Berge [4] and Hogan [17].

4
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Definition 2.1. Let ~ be a real—valued function definea on the space X.

i) ~ is said to be lower semi—continuous at a point x0cX if

lim q (x) >~~(x~).x -x
0

ii) ~ is said to be upper semi—cnntinuous at a point x0eX if

u r n  4 (x) <

0

Using these definitions, one readily sees that a real—valued

function ~ is continuous at a point if and only if it is both upper

and lower semi—continuous at that point.

Definition 2.2. Let 4:X-+Y be a point—to—set mapping and let {cnl cx

with c~~
-I.c (~ in X).

1) ~ is said to be lower semi—continuous at a point c of

X if , for each xc4(c), there exists a value n and a

sequence {x} CY with x~c4(c ) for n > n and x~-+x.

• ii) ~ is said to be upper semi—continuous at a point c of

X if x~c4(c ) and X
n
•*X together imply that ~c4~~ ).

Following Berge [4], we denote the lover (upper) semi—continuity

of point—to—set maps by l.s.c. (u.s.c.); for real—valued functions we

use the notation lsc and usc for lower and upper semi—continuity,

respectively.

- 6 -
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Definition 2.3. A point—to—set mapping 4:X’÷Y is said to be uniformly

compa~t near a point ~ of X if the closure of the set U4(c)_ is corn—
c in N ( c )

pact for some neighborhood N(~) of ~~.

In Section 3 we apply a reduction of variables technique to

P(c) which transforms that program to an equivalent program involving

only inequality constraints. This approach simplifies the derivation

of intermediate results which are needed to derive the bounds on the

directional derivative limit quotients of f*(c) given in Section 4.

A demonstration of the results is provided in the example of Section 5.

Section 6 concludes with a few remarks concerning related results.

3. Reduction of Variables

In P(t), if the rank of the Jacobian, V
~ h , with respect to x of

the ( f i r s t  n) equality constraints in a neighborhood of a solution is

equal to n , then the given solution is completely determined as a

solu tion of the system of equa t ions h~ (x 1c) = 0, j = 1,... ,n , and the

(locally un4.que) solution , x(c), of this system near c = 0 is then

completely characterized by the appropriate implicit function theorem,

depending on the assumptions about c, as for example in [9] and [20].

We are here interested in the less structured situation and hence

assume that the rank of V h is less than n. Since we shall be making
x

use of KFCQ, this entails the assumption that the number p of equality

constraints is less than n. If there are no equality constraints in a par—

ticular formulation of P(c), simply suppress reference to h in the follow—

ing development. Otherwise, we take advantage of the linear independence

assumption to eliminate the equalities, again using an implicit function

4 theorem.

— 7 —
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If the mapping h:EnxEk~.EP satisfies the following conditions:

i) h is continuous on an open neighborhood of the point

* * * * p * n— * k(xD,xI,c 
) ,  where xDCE , x1cE , and c is in E

* * *ii) h(x
D,
xI, c ) = 0,

i i i )  the p x p Jacobian V h(xD,
xI,c) of h exists in a

neighborhood c’f (x D~
x I, c ) and is continuous at that

I 
poin t , and

1’s’) h(~~,4~c*) is nonsingular ,

where x — (x D ,xI ) ,  then the usual implicit function theorem results

hold , i.e., the system of equations h(x..D,xI,c) 0 can be solved for

O 
XD 

in terms of x1 and c for  any x1 and c near x1 
and ~ respectively .

Furthermore , this representation is unique and the resulting function

* * *x,~(x 11c) is continuous in a neighborhood , N , of (x
1
,c ) and

x • x~(x ,c). Thus, in N , the system h(xD,
xl,c) Cl 0 is satisfied

identically by the function x..0 x,D(xI, c). Under our additional

assumption that h is once continuously differentiable in x1 and i ,

xD
(x I,c) is also once continuously differentiable in x1 and c.

Applying this result to P(c), near (x~ ,c*) ,  since we have

T~(x1,c) h[x..~(x1,c),x1,c] — 0, this problem can be reduced to one

involving only inequality constraints:

m m  f(x,,c)
- 

XI

~ (c)

s .t .  ii (x 1, c) > 0 (i—l ,...,m),

4
— 8 —
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where ~(x
1,
c) f[X

D
(xI, e),xl,c] and ~~(x1,c) E gj[xD(xI,c),xI,c] for

I 1,... ,m, and where the minimization is now performed over the n—p

dimensional vector x1
. The programs P and ~ are equivalent in a

neighborhood of (x~,c*), In the sense that the point x(c)cE~ , with

x(c) — (x.~(),x1(c)), satisfies the Kuhn—Tucker first—order necessary

conditions for an optimum of P(c) if and only if the point x1(c) satis-

fies those conditions for ~(c), where xD(xI, c) is as given above.

We now show that the Mangasarian—Fromovitz constraint qualifica-

tion for P(c) is inherited by the reduced problem ~(c). For simplicity

in notation , and without loss of generality, assume that = 0, assume

that x~ is a local solution of P(O), and assume that the components of

x have been relabeled so that x Cl (x.~,x1) and V h(x~,x~,0) is non—

singular. We first state, without proof , the straightforwardly proved

equivalence result that establishes the connection between local solu-

tion points of P and ~~~.

Lemma 3.1. If f,g,hcC1, and the once continuously differentiable vector

function Cl xD (x t , c) is given (e.g., by the implicit function theorem

as indicated) such that h(xD(xI,c)IxI,c) 0 in a neighborhood of

(x*,O) = (x~,x~,O) ,  then near c Cl 0, the point x(c) satisfies the Kuhn—

Tucker first—order necessary conditions for an optimum of P(c) if and

only if the point x1
(c) is a Kuhn—Tucker point of ‘

~(c). Furthermore,

near c — 0, x(c) is a local solution of P(c) if and only if x1(c) is a

local solution of ~(c), where x(c) — (x
D
(xl(c),L),xl(c)).

If there are no inequality constraints in P(c), then ~(c) is an

unconstrained problem. In this instance, restriction or x1 to a corn—

pact set containing a solution set of P(0) makes it possible to obtain

— 9 —
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immediately the directional derivative, Di*(0) (see (4.1) for the

definition) of 1*(O) , the optimal value of ~ (O) , in any direction z

and in tcrms of x1, by using a result due to Danskin [5]. Since

it is easy to calculate the corresponding result for

P(c) in terms of x (x~ ,x1) .  Since this result is readily obtained

and since we have not seen this development in the literature, we give

the details before analyzing the more difficult situation Involving

inequalities.

Ass~me that the feasible region R(c) of P(c) is nonempty and uni—

• formly compact near c — 0. Then, the solution sets S(c) of P(c) and

~(c) of ~(c) will exist and will be uniformly compact near c 0. Con—

O sider ~(c): mm t(x ,c) s.t. x c~~, a nonempty compact set, independent

-

- 

of c, such that for c near 0 the interior of ~ contains ~(c). Danskin’s

result (see also (6.1) and the ensuing discussion) says that under the

assumed conditions, D r(O) rnin~ zV f (x 110) s.t. x1
c~ (O) , the set

I
of solution points of ~(0). Since x.0 — x.0(x 1,e) is a differentiable

function , and since h [x.0
(x1,c),x1,c] E 0 , it is easy to show that

V f — V  f V x . ~~+ V f — — V  f V  h~~~ V h + V f — w V h + V f — V L ( x ,w ,c) ,
C x~ c u  c X.~ x~ c C C £

where u — V f V h and L is the Lagrangian of P(c) (without thexD xD
inequality constraints). Since l*(C) f *( c) ,  it readily follows that

Daf
*(O) mm zV L(x ,u(x),0).

xcS(0) £

This result also follows as a specialization of our general re—

suits (see Corollary 4.6 and the note following the proof) as does

Danskin ’s result (see the discussion just before and after (6.1)) . It

may also be of interest to observe that if the transformation

4 
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xD 
— x~0

(x1,c), or any nonsingular transformation, results in a problem

whose constraints are not dependent on the parameter c , then the above

approach applies, the domain of interest of the transformed problem

simply being the intersection of the set of points satisfying the

parameter—free constraints with a compact set ~ selected as above.

We now turn to the development of the results for the general

problem P(c) where it is assumed that both inequalities and equalities

are present.

Theorem 3.2. If f,g,hcC~ , then MFCQ holds for P(O) at (x
*,O)

(x~,x~ ,O) with ~ = (
~ D ,~~I

) C
~~

’ the associated vector , where 9DcE’~ 
and

if and only if MFCQ holds in problem ~ (O) at the point

(x~,0) with vector

Proof. Suppose that MFCQ holds for P(O) at (x*,O) = (x~,x~ ,O) with

= the associated vector. Writing V
~
h as h:V hi , we

L D I J
0 

see that (2.2) can be expressed as:

* *V h(x ,O) 
~
‘D + V h(x ,O) 0. (3.1)

Since we have assumed that V h(x*,O) is nonsingular, we can solve

for 
~D 

in (3.1) and obtain:

= _ [V~~h(x*,o)]_l V h(x*,O) 
~i

• (3.2)

Now, denoting the inequality constraints of ~ (O) by 
~~~~~~ 

i.e.,

— g
1

(x~~(x1
Io) 1x1,o), i — 1,... ,m , by differentiating with respect

to x we obtain:

4

t 
. - U-

~~~~0~ • •
,
~~~~~~~~~~~~ • O  -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ - —
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— V g ~ V X D + V~~
gj,

or 

~~~~~~~~~~~~ (3.3)

Multiply ing by 9~ in (3.3) we have :

v j~ Vxg
j[
~ dI~~~ 

~~~~~ 
(3.4)

But h(x.0(x 1,
0),x1,0) 0 so that

V h(x
D

(x
I,O) , xl,O) V x.0 + V h(x.~(x 1,O ) , x1, O) — 0,

and since V h(x.0(x1,0),x1,0) Is nonsingular, we obtain :

- - 
[V 

h(x1~(x1~O)~ x11O) 
1 ~ 

V h(x.0(x
1,O),x1,O).

Substituting this last expression in (3.4) we have:

V~~~~ 
~I 

- ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
V
x

h(x
D(xl~0)IxII0)] 

~~~~~ ,

and from (3.2) we see that at (x~,0)

I ~x1~i ~
‘I v~~1 

— V g ~ 3. (3.5)

4 
. Thus, by (2.1) it follows that 

~~~~~~ 
> 0

- 1 2 -
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To prove the converse, we first note that, by the hypotheses of

* *
- the implicit function theorem, V h(x

D,xI,
0) is nonsingular. Thus,

the gradients V h ~ (x~~0)~ j l,...,p, are linearly independent and

by choosing

— 
_[ 

V~~h x *IO)] V h(x* O) 
~

(2.2) is satisfied for j — 1,.. .,p. The inequality in (2.1) now

follows from (3.5), a direct consequence of (3.1).

— In [11], Gauvin and Tolle established that the set of Kuhn—

Tucker multip liers associated with a solution, x~ , of P(0) is non—

*empty, compact and convex if and only if MFCQ is satisfied at x

That result enables us to establish in Theorem 3.3, a necessary link

between a directional derivative, with respect to the decision vari-

able x1, of the objective function at an optimal point and a direc-

tional derivative of the Lagrangian taken with respect to the parameter

1 . It is this relationship which eventually leads to the upper and

*lower bounds on the directional derivative of I which are derived

in the next section.

For notational simplicity, throughout the remainder of this

paper we shall refer to the problem functions of the program ~(c)

without the ‘tilda’ notation. The distinction between reference to

P(E) and ~(c) should be clear from the text. Also, the decision

variables for the reduced problem will not be subscripted, and , unless

specified to the contrary, all grad ients will be understood to be taken

• with respect to the relevant decision variable.

4
• — 13 —

O 
~~~~~~~~~~~~~~~~~~~~~~ 
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The next two theorems are crucial in obtaining the sharp bounds

on the optimal value directional derivative limit quotient. They show

that , at a local minimum where MFCQ holds, there exists a direction

(in E~~~) in which the directional derivative of the objective func-

tion yields that portion of the bound attributable to the constraint

perturbation.

Theorem 3.3. If the conditions of MFCQ are satisfied for some

then, for any direction zcEk, there exists a vector

satisfying:

i) _Vg
j(x

*,O) y < zV g1(x ,0) for iE~ (0), and (3.6)

ii) Vf(x*,0) ~ = max [—z vi g(x*,o)iJ]. (3.7)

Proof. Given zcEk, consider the following linear program :

max
M 

[—z

s.t. ~lVg(x
*,0) Vf(x~

’,0)

IL jgj(x
*,0) 0 (i 1,.. .,m)

~i~~- °

The dual 3f this program is given by:

4 .
-
~~~ 

• — 1 4 — 

-

~~ 
‘
~~~~1~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• 0 0 ~~~~~~~~~~~~~ ~~0 0 ~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~ 
-
~~~~ 

- —
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*mm V f ( x  ,0) y
y,v

* * *s.t. Vg~ (x ,0) y + g1(x ,0)v 1 > —z V g ~ (x ,0) (1=1 ,.. .,m)

n—pycE , V
j 
unrestricted .

*
Since MFCQ is assumed to hold at (x ,O), from Ell J we have that

~ (x*,0) is nonempty, compact and convex. Thus, the primal problem

is bounded and feasible. By the duality theorem of linear pro-

gramming , the dual program has a solution , (~ ,v), and hence there

exists a vector ~ satisfying (3.6) and (3.7).

By chang ing the sign of the objective function in the primal
*

program above, thereby maximizing z V~g(x ,0)~i , we are also able to

conclude the following.

Theorem 3.4. If the conditions of MFCQ are satisfied for  some

* k - n-x cS (O) , then for any direction zcE , there exists a vector ycE ~

sat isfying:

i) Vg j (x *,O) ~ > zV g~(x~,0) for ic~ (0), and (3.8)

* — *O 
ii) Vf(x ,Q) y Cl max [zV ’g(x ,O)u]. (3.9)

— * C

• ~icK ( x ,0)

By taking f(x,0) constant, then since any point in ~ (0) solves

~ (O) , it easily follows from Theorems 3.3 and 3.4 that  there exists a

vector ~ satisfying (3.6) and (3.8) for any x~ in ~(0).
S.

4
— 1 5 —
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In the next two theorems we show first that, along any ray emi—

nating from C = 0 , ~(e) has points of feasibility near c = 0 , and

second, that the existence of feasible points is guaranteed not only

along rays but in a full neighborhood of c 0.

Theorem 3.5. Let g:En~~ x E
k 

-* E
m
, with gcC~

’. If MFCQ holds at

X*C~ (0) then, for any unit vector ZEE
k and any 6 > 0 ,

g(x* + ~~~ + 67),~ z) > 0 for ~ positive and sufficiently near zero,

where ~ is any vector satisfying (3.6).

Proof. L’.t z be any unit vector in Ek and consider first the case

in which the constraint g~(x,c) > 0  is binding at (x
*,0). Expanding

• gj(x*+ L~G + ó9’),~ z) about the point (x*,0) we obtain:

+ 63),Bz) = + 63) V g j(x
*+ t~(~ + c53),Bz)

+ ~ z V g ~(x*,t~~z)

= ~~ V~g~ (x~+ t~ (~ + ä3),8z) + 2 V g
j (x*, t T~~z ) ]

+ ~6 3 V ~ gj (x *+ t~~(~ + 53),8z),

where t , t ’ c(O ,l) and t — t ( 8) , t’ — t’(8) .

Now, by (2.1), V~ g~ (~ *,~~) 9 —  a~ > 0. Thus, there exists B ’ > 0

such that for all 3e[O,B’J,

* — 
3a~

3 V g1(x + tB(y + 63),Bz) > —
~~~~

— .

From (3.6) it follows that for B sufficiently small,

* — * 6y V g1(x + t~ (y + 53),Bz) + z V g (x ,t’Bz) > — 
ai

4 •. 

,

- 
—•

~~-‘~~~~~ 
— —• —~~-.-!,r•- -

~
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Thus , fo r i~ positive and near zero we have :

+ 69),~ z) > + = ~ Sa~ > o.

Finally, if g~(x ,0) > 0, since each is jointly continuous

in x and C , it follows tha t , for  any unit vector zcEk, and any 6 > 0

* —
+ t3 (y + 5~ ) , Bz) > 0 for ~ near zero.

Theorem 3.6. If MFCQ is satisf ied at x*c~~(0),  then there exists ~ > 0

such that for every unit vector lEEk and any 6 > 0 ,

+ 59),Bz) > 0 for all Bc (0 ,~~], where ~ satisfies (3.6) and

~ is given by the constraint qualification .

Proof. From the previous result, we have that for any unit vector

• zcEk and any 6 > 0, there exists B’ Cl 8’(z,6,y3) such that for all

~L(0,L~’], g(x
*+ BG + 63),t3z) > 0. For the remainder of this proof

we suppress all but the first argument of ~~~
‘ writing 8’ — L3’(z), and

* —

further assume that B’(z) = sup {y:g(x + 8(y + Sy ) , t3z) > 0 for all

8c(O,y)}.

Suppose there is no value ~ which satisfies the stated condi—

tion for all unit vectors z. Then there must be a sequence {z) of

unit vectors from Ek with B ’ ( Z n ) ••I
~•O• By the compactness of the unit

sphere , there exists a unit vector zeEk with z~ ~ for some
j

{z }ç {z 1. Since 8’(z )-‘O, there is an integer N such that for all
n
j 

n n

• 
n > N, B’ (z) < B’ (z) — F~ where 0 8’ (z). Relabel the subse—

quence {z :n > N) so that it is indexed by n 1,2,...; we now refer

-17 -

~~

~ 

~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 
. 

-

~~~~
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to this subsequence as the sequence { Z
n

} By the definition of

we must have, for some i = l,...,m, gj(x
*+ 8(~ + 63),Bz ) < o

for 8c[8’(z~)~ Ti) for some n n(z~). However, since Z
n 

-÷ z and

is continuous, there must be an integer N1 
> N such that

gj(x
*+ BG + 53)~ 8z~) > 0 for all n ~~N1 

and all Bc(O ,8’(z)). Since

< 8’G) for all n > N, we have a contradiction and the proof

of the assertion is complete.

Since, by Theorem 3.3 and the observation immediately following

Theorem 3.4, the satisfaction of the Mangasarian—Fromovitz constraint

qualification at a feasible point , x~ , of ~(0) is enough to guarantee

the existence of feasible points for ~~(C) near x’~, one might suspect

that there exist points feasible to P(c) which are also feasible to

~(0). This is indeed the case as the next theorem implies (see the

statement immediately following the proof of Theorem 3.7). We shall

need Theorem 3.7 in obtaining one of the key results in Theorem 4.3.

Theorem 3.7. Let 8 -~~ 0+ in E~ , let z be any unit vector in E
k, and

let 6 > 0. If x c ~~( 8 z) , with x -* x*~~(0), and if the conditions of

MFCQ are satisfied at x~ , then x1~ + B~(~ + 69) c~~(0) for n suff icient ly

large, where ~ satisfies (3.8) and ~ is given by the constraint

qualification.

Proof. Consider first the case that iE%(0) . Expanding g
~

(x
~ 

+ B (~ + 63r),0)

about the point (x ,85z), we obtain:

S.

4
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g
1
(x~ + + 59),0) Cl gi

(x
~~

,8
~~

1) + ÷ 69)Vg1(x ÷ t8 (~ + 69),0)

~n
Z V g ~~(x + +

where t,t ’c(O,l) ,  ~ t(8~)~ ~~~
‘ = t ’ (8~). If, for n large,

x + 8 ( ~ + ó9)~~ (0), since x is feasible for ~ (8~z) > 0, it must

-
~~ be that

8nG + 6~~) Vg~ (x +.t BG  + o9),O) ~~z V g
1

(x + 8 ( ~ + 69),t’8z). (3.10)

Dividing by 8 in (3.10) and taking the limit as n -~-~~~we have

(
~ 

+ 6~~ Vgj(x*,0) < z V g j(x~,0).

But this contradicts (3.8), since 6 > 0 and by MFCQ 9 Vg .(x*,O) > 0.

If, on the other hand , i/~ (0), g~(x + 8 G  + 69),0) > 0 for

large n by the continuity of g1 and the fact that x~ and 8 
-
~ 0.

Thus, x + ~~~ + 69)c~ (0) for n sufficiently large.

‘1 It may be interesting to note , that by taking x = x~+ 8 (y + 6~)

for each n in the hypothesis of Theorem 3.7, then Theorems 3.3, 3.4,

3.6, and 3.7 together imply that ~ (c) and ~(0) have points in common

for c near 0.

We now show that the optimal value function f*(c) is continuous

near c = 0 under the given assumptions. This was proved by Fiacco

[8], the details being repeated here to make this paper complete.

This result will be needed in the proof of Theorem 4.3.

4
0 

— 1 9 —

8 .
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Lemma 3.8. If ‘~(0) is nonempty and ~ (c) is uniformly compact fcr c

near zero, then ~(c) is a u.s.c. mapping at c = 0.

Proof. Let e ÷ 0 in Ek, and (for n sufficiently large), let

x~c~ (c). Thus, for n sufficiently large, g(x~~E~) > 0. By the

uniform compactness of ~(c), there exists a convergent subseque’ce

{x } of {x } with x ÷ ~ for some ~ in the closure of LJ~ (c), wheref l~ n n~ c i n N(O)
N(0) is some neighborhood of e = 0. But by the continuity of g, we

must have 0 < lim g(x ,c ) g(~ ,0). Thus ~c~ (0) and we have that
j ÷OO j j

~(c) is u.s.c. at c = 0.

• Theorem 3.9. If ~(0) is nonempty, ~(c) is uniformly compact for c

near zero, and if the conditions of MFCQ hold at x*c~(0), then f*(c) is

continuous at c = 0.

Proof. Let c 0 in Ek, and (for n sufficiently large) let

By the uniform compactness of ~ (c), the sequence {x} admits a con-

vergent subsequence {X
n 

}~ Let x denote the limit of that subse—
3

quence . From Lemma 3.8, ~ (c) is a u.s.c. mapping at £ 0, so

~i~~(0). Thus,

him f*(r) him f*(c ) u r n  f(x ,~ ) f6~,0) > f*(0)
j÷oo ~j j÷oo “j “j

and we see that f*(c) is lsc at £ Cl 0.

Now let 6 > 0, let 3 be given by MFCQ for x~ , and let ~ satisfy

(3.6). From Theorem (3.5) we know that x* + + 
~~
)
~~~~k

z)

-20 -
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for all un it vectors zeEk providing 8k is suffic iently near zero.

Letting E
k 

-, 0 and without loss of generality , assuming c~ � 0 for all

n, setting 8k 
= hi ~kU and Zk C~/ j ~C~! I~ we see that

l~~ f*(~) j
~iin f*(c)  < u r n  f(x* + 8k(y + lS9),

~~k
Z
k
) f ( x~ ,0).

O c~0 Lk
+O k-*CO

Thus f*(c) is also usc at c 0 and we may conclude that f*(c) is

continuous at c 0.

We should mention that the continuity of f* requires only the

continuiry of f in addition to the once (joint) continuous differ-

entiability of the constraints.

4. Bounds on the Parametric Variation of the Optimal Value Function

In this section we are concerned with the directional derivative

of the optimal value function for P(C). We first derive upper and

lower bounds on the directional derivative limit quotient of f*(c)

for  ~ (c) and then obtain the corresponding bounds for P(C). These

results extend the work of Gauvin and Tolle [111, who obtained the

analogous results for the case in which the perturbation is restricted

to the right—hand side of the constraints.

As above, we will, without loss of generality, focus attention

on the parameter value C — 0. For ZEEk, the directional derivative

of f*(Ø) in the direction z is defined to be:

5- -

4
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0

D f*(O) ~~~~~~~ 

f*(Bz) — f*(0) , (4.1)
-
~ z B

providing that the limit exists.

Theorem 4.1. j I~, for ~(c), MFCQ holds for some x*c~ (O) , then, for
kany direction ztE

* *
him ~~~ 

f f (0) 
< max zV t(x*,Ij,0). (4.2)

lic~ (X*,O) 
C

Proof. Let B satisfy the conditions of Theorem 3.6, let 6 > 0

and 9 be the vector given by the constraint qualification , and
- klet y satisfy eqs. (3.6) and (3.7). Then, for any ZCE

x’~ + 8(~ + 69)c~ ($z) for Bc [O,8] for some ~ > 0, so that

lim sup 
- f*(0) 

< urn ~~~ 
f(x* + BG + 63),Bz) - f(x*~~~ - ~~(x*,0)

B-~(ft 
B 8 8

— (~ + 69) V f ( x *,0) + ZV f(X*,0).

Since this inequality is satisfied for arbitrary 6 > 0 we can

take the limit as 6 0 and obtain :

lim sup f
*(8Z) — f*(0) 

< y Vf(x*,0) + zV f ( x *,0).
B C

-22 -
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The conclusion now follows by applying (3.7):

u r n  sup f*(82) — r*(O) 
< max [_zV~g(x*,O)~~J + zV f(x*,0)

8÷0k 8 lJC~~(X *,0) C C

Cl max zV t(x*,~ ,O).
IiC~~(X*,0) C

Corollary 4.2. Under the hypotheses of the previous theorem, if

MFCQ holds at each point xc~(0), then

— f*(0)u r n  sup < inf max zV L(x,~i,0). (4.3)
B~ O~ 

B xE~ (O) uc~ (x,O) ~

Proof. The result follows directly by applying the previous theorem

- 0 at each ~otnt of ~(O),

Theorem 4~ 3. If, for ? ( E ) ,  ~(0) is nonempty, ~~( C)  is uniformly com-

pact near c = 0, and MYCQ holds for each x*E~~(O) , then, for any

direction ZEEk, z a unit vector ,

O 

f*(B .
~ — f*(O~ —liin inf ‘ ~~ ‘ > mm zV L(x*,U,0) (4.4)B — 

pe~ (x*,0) C

holds for some x*c~(0).

Proof. Let x~e~ (8 z) and let B -‘ (ft be such that

I I . -. - f*($z) — f*(0) f(x ,B z) — f(x*,O)
him inf — lim

n-~~ 
B
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Since R(t) is uniformly compact , there exists a subsequence, which we

again denote by {Xn
}
~ 

and a vector x~’ such that x0 
x~ . By Lemma 3.8

1(u) is u.s.c. at c — 0 so x*~i(O). Since we showed in Theorem 3.9

that f*(~) is continuous, it follows that x*c~ (O). Then, since

Theorem 3.7 assures that X + 85
(y + 69)cl(0) for n sufficiently large,

it follows that

lim inf 
f*(Bz) - f*(0) him 

f(x ,B z) - f(x*,0)

B n-’00 8n

f ( x  ,8 z) - f (x  + B (~ + 6~),O)
0 > lim n n  n n

n-~0O

0 • him E— G  + 6~)Vf(a ) + zV f(n ))
n-~OO

• by the mean value theorem, where is the usual convex combination

(in E5~~ x B
k) of the two arguments in the preceding quotient. Thus,

lim m i  f*~~1) - f *(o) 
> u r n  z V f(a ) - (~ + ~~) Vf(n )

B n-~~ 
C fl

= z V
c
f(x*,0) — (~ + 69) Vf(x*,0).

Using (3.9) and noting that 6 was chosen as any positive value, we

conclude that for any x*c~ (O) where !4PCQ holds,

lim inf 
f*(Bz) — f *(o) 

> z V f(x*,0) — max [zV
~
g(x ,O)i]

B £

— mm z V
~
L(x ,l

~
i ,O).

— 2 4 —
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Corollary 4.4. Under the hypotheses of the previous theorem

lim inf 
f*(8z) - f *(o) 

> inf mm z V t(x,~ ,O). (4.5)
8 XC~ (0) ~C~~(X,O)

Now, by the reduction of variables that was applied earlier, we

see that, in a neighborhood of (x~,0), with x (x.~(x1,E),x1), that

L(x ,-ii , ~,c) Cl f (x ,c) — jig(x,c) + ~ h(x ,~)

— f (x.0(x1,c),x1,C) — ~ g(x.0(x1,c) , x1,C) + ~ h(xD(xI, c),xI,c),

— ?(x1,c) — ~i ~(x1,c) —

with f ( x ,C) ?(x1,c), g(x ,c) ~(x1,c), and h(x,C) i~(x1,c) 0. Thus

L(x,~1,.~,E) t(x1,~~, ) in a neighborhood of (~~ (x~,0),x~ ,0) (x~,0)

and , with ~ determined by L — — (V~~f — uV ’ g) [V ’ h~~ ), it follows

- easily that V
~
I — V L  and the linear program appearing in the proof

of Theorem 3.3 can readily be formulated analogously as an equivalent

O 
problem in terms of L(x,i.i ,w,c). Thus, all of the results obtained

above for ~(c) can be immediately generalized to P(c). For complete-

ness, we state these results as the next Theorem.

Theorem 4.5. If, for P( c), R(0) is nonempty and MFCQ holds at each

xcS(0) , then fo r any unit vector zcEk,

him sup 
f8(Bz) - f*(p) 

< inf max z V L(x,~~,w ,0), (4.6)
8 xcS(O) (i~,w)cK(x,0) 

C
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and if R(c) is uniformly compact for c near £ 0, then

f*(8z) — f*(0)lirn inf > inf aim z V L(X,p,taj,O). (4.7)
xcS(O) (p,w)eK(x,0) £

Moreover, we are able to obtain the existence of the directional

derivative of f’~ at c = 0 by assuming, as Gauvin and Tolle [11] did

for right—hand side programs, the linear independence of the binding

constraint gradients at each point x*CS(0).

Corollary 4.6. Assume R(0) is nonempty and R(c) is uniformly compact

near £ 0. If the gradients, taken with respect to x, of the con-

straints binding at x~ are linearly independent for each x
*ES(0),

then for any unit vector ZCEk, D f *(0) exists and is given by

D f*(o) inf z V L(x,~~(x),w(x),O),z xcS(O)

where (~ (x),u(x)) is the unique multiplier vector associated with x.

Proof. At any point x*CS(0), the linear independence of the binding

constraint gradients implies the uniqueness of the Kuhn—Tucker multi—

pliers corresponding to xe’. Inequalities (4.6) and (4.7) now combine

to yield the desired result .

Note that in Corollary 4.6 , if P(c)  contains no inequality con—

straints, we could replace inf by mm since ~i would not appear and

- 
w - - V,~~f ~~~~~ which is continuous in x, making zVL a continuous

function of x minimized over S(0), a compact set.

4 
I 

We may also show that two of the observations made by Gauvin and

Tohhe [hl~ about D f
*(O) for right—hand side programs apply to P(C)

I 
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as well. First if D
z
f*(0) — D_ zf

*(0)~ then

inf max z V L(x,ii ,w,O) — sup m m  z V L(x,ii ,w,0). (4.8)
xcS(0) (~ ,u)cK(x,0) xES(0) (i.i,~ )cK(x,0) 

£

Thus, if, for all unit vectors zeEk, D f *(0) — D_zf*(0) and

D f *(0) — inf max z V L(x,jA ,w ,0), (4~9)xCS(0) (i5’,w)cK(x,O)

then (4.8) provides a necessary condition for the existence of Vf(0).

In addition , if (4.8) holds for every unit vector zCEk and if x*CS(O)

is the unique solution of P(O), then its associated Kuhn—Tucker multi-

plier vector is unique.

We next apply the results derived above to a particular class

of programs. We show Ia the next theorem that if P(C) is a convex

program in x for L near c = 0, i.e., if f ( x ,E) and

i — l,...,m , are convex and if h~ (x~ .). j — l ,...,p, are affine in x,

then D f *(0) exists and is given by (4.9). To prove this result, we

will restrict our attention to ~(c). We are able to do this since

the functions h~(x~c) are assumed to be af fine in x and g~(x,C) are

taken to be concave in x, from which it easily follows that i~(x~c)

a is concave in x for I — 1,.. .,m.

Theorem 4.7. In P(C), let f(x,C) and —g~(x,c), i — l,...,m be con—

vex and let h~(x~c)~ j — l,...,p be aff ins in x. If R(O) is non—

empty, R(t) is uniformly compact near £ = 0, and MFCQ holds for each

x*CS(0), then, for any unit vector zcEk,

4 D f*(0) — inf max zV
~
L(x,

~~
,w,O). (4.10)

Z xcS(O) (ii ,w)cK(x,O)

_ _  
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Proof. Without loss of generality , we will prove this result for

Let x*c~ (0) and X~E~~(B~Z) with 8n ~ 0
+ in such a way that

u r n  inf f*(B) - f(0) 
= lim 

f(x ,B z) - f(x*,0)

B n~00 
8n

and ÷ x’~ as in the proof of Theorem 4.3. For all

t(xn~3A*I8nz) 
Cl f(Xn,B z) — p*g(x ,8 z) <

where the inequality follows from the non—negativity of both ii~ and

g(x~~Bz). Thus, since t(x*,p*,0) f(x~,0),

• f(x ,B z) — f(x*,0) i(x ,~j*,Bz) — t(x*,p*,O)
lim .ilim B 

- —

n÷OO ~
‘n n~OO n

Now , as a result of the Kuhn—Tucker conditions and the convexity

assumptions , x~ is a global minimizer of t(x,U*,0), so

t(x ,11*,B z) — t(x*,I~*,0) t(x ,U*,B z) — t(x ~*,o)
u r n  

B 
> 1 mm 8 —

H n-’0° n n- OO n

t(x ,~*,Q) + 8 zv t(x p* t8 z) — L(x ,~*,o)
— lirn 

n n i n n 
- 

n

n-~ 0

by the mean value theorem, where tc(0,l). Thus

f(x ,B z) — f(x*,0)
• 

8 
> lim zV L(x ,~i ,t8 z),

n n-’OO

4 
• and , passing to the limit on the right, we are able to conclude that

-28 -
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f(x~ 8~z) — f ( x*,0)
lim 

B 
> zV t(x*,jJ*,o). (4.11)

ti+OO P

Thus, for some x*CS(0), since (4.11) holds for each p*CK(x*,0), and

recalling from [111 that ~ (x*,0) is compact,

lim inf f*(8z) ~~~~~~~~~~~~~~ zV t(x*,~~,0),
~iCK(X*,O)

from which we see that

him inf 
f*(8z) f *jp) inf max 

* 
zV t(x,u,0).

B÷O~ xcS(O) icK(x ,0)

Combining this result with that obtained in Corollary 4.2 we conclude

that

D f*(0) — inf max zV t(x,ij ,O).
Z xc~ (O) ~cK(x,0) ~

For convex P(~), (4.10) now follows by an inversion of the reduction

‘1 of variables process applied to yield P(c).

5. Example

We use the example stated below to demonstrate the theoretical

results obtained in the previous sections. For the given problem we

show that the conditions of MFCQ hold at every point in S(c) and we

give the form of the vector satisfying the constraint qualification.

We then show that the expected form of the vector satisfies (2.1) and

S., ( —(2.2) for P(c), and that the bounds stated in (4.6) and (4.7) are

attained.

4 .
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Consider the program

win cx
1 

P(C)

s.t. g(x,e) = — (x
1—c)

2 
— (x

2
L2)2 + 4 > 0

h(x ,L) = _ x
1 +x 2

+ C 0.

The solution of this program is easily determined to be x~ x~ + £ with

x~ — 10 C>0 
, and if £ ~ 0, x~ can be any value in the interval [0,2]. (5.1)

Applying the reduction of variables technique outlined earlier, with

— x
1 and x1 — x2, P(c) is transformed into the equivalent program

mm c (x2
+c) 1’(E )

s.t. ~(x2 , E)  — — x~ — (x
2—2)

2 + 4 > 0

whose solution is given by (5.1).

For both P(e) and ~(c), the optimal value function can be written

as

I C 2

f*(E) 1 2 

— 

. (5.2)
(c+2 c c < 0

We see tha t f* is continuous for all values of C , but it is not differ—

entiable at t — 0. It does, however , have directional derivatives at

£ 0 which are given by

~0 z — 1
D f*(0) — . (5.3)

(—2 z — l

4 

~~~
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To illustrate Theorem 3.2, we first determine the general form

of the vector, ~~~~, which is guaranteed at points xcS(C) at which

MFCQ is satisfied. The constraint gradients of P(c) are

Vg(x,c) = [—2(x
1—c), 

—2(x2—2)], and

- . Vh(x ,c) = [—1 ,1].

0 Applying (2.1) and (2.2) at a point x~ — (x~,x~)e S( c) ,  with

— (y 1,y2), we have Vg(x*,E) ~ —2(x~—e) y1 
— 2(x2—2) y2 > 0 if

1 g(x*,0) Cl 0, and

Vh(x*,C) ~ —y1 + y2 
— 0.

- I Thus, for any value of c , since g(x,c) is binding only if

can have the form

(a,a) x~~— 0

— (b ,b) 0 < x~ < 2 , (5.4)

- (c,c) x~ 2

- 
for any real numbers a,b,c with a > 0, b arbitrary, and c < 0. We

can also conclude that MFCQ holds at every solution of P(c).

In a similar fashion, we see that, for ~~ (E) ,

V~(x2,c) — —2x2 
— 2(x2—2),

so applying (2.1) we find that the vector in the reduced

program takes the same form as the second component of ~ in (5.4).
_‘5 

0~•~
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Now

VL(x,~i ,u,c) [C + 2~i(x1—E ) 
— w , 2~ (x2—2) + w ] ,

so that at a solution x*CS(0) we must have 2iix~ 
— = 0 for

(i~m ,w)eK(x*,0). Then

V L(x*,~i ,w,0) x~

t 2
and, with S(0) {xcE x1 x2, x2C(0,2]},

0 z = l
win max z V L(x,~i ,u,0) = . (5.5)
xeS(0) (i.i,w)cK(x,0) 

C — 2 z = —l

Comparing (5.3) with (5.5) we see that (4.6) holds with equality.

Now, considering inequality (4.7), we first note that for any

neighborhood N(0) of OeE1, the closure of the set

{xcE2: x = (x2+C, x2), x2c[0,2], c in N(O)} is compact so R(e) is

uniformly compact for c near £ = 0. We calculate

0 z l
win win a V L(x,p,w,0)
xCS(0) (ij,w)CK(x,0) 

C —2 z —1

and find that (4.7) also holds with equality .

An example is given in [lii which illustrates that (4.6) and

- (4.7) need not hold with equality.

0 6. Related Results

-

• - Inspection of the derivation of (4.6) and (4.7) reveals that the

bounding term in these expressions, namely zV
~
L(x,ii ,w,O), can be

-- 32 -
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viewed as the sum of two distinct expressions, one resulting from the

variation of the objective function of P(c) with respect to the

parameter, the other deriving from the dependence of the region of

feasibility on the parameter . The first of these terms is z V
~
f(x,0)

and is easily seen to result directly from the manipulation of the

limit quotients in the proofs of Theorems 4.1 and 4.3. The second

0 component, z[—V~g(x,0)-p + V ’h(x,c)w], results from the assumption that

O MFCQ holds at points of S(0). The conditions of MFCQ are invoked to

enable us to conclude (3.7) and (3.9), as well as the existence of

points feasible to P(c) in a neighborhood of c Cl 

~ Having made

- 
these observations, we are now able to discuss the relationships

between the bounds provided here and results previously obtained by

• others. As we shall see, in particular instances in which the direc—

• tional derivative of f~ is shown to exist, it is expressed as either

a function of V f or a function of V g and V h, or a combination of
C C C

all of these terms, depending , as one would suspect, on where in

P(e) the parameter appears.

Danskin [5,6] provided a now well—known characterization of the

directional derivative of the optimal value function of P(c) in the

case that the constraints are independent of a parameter. Under the

0 o conditions that the region of feasibility , R(0), is compact, and
- 

f(x,C) and V Cf(x,C) are continuous at c 0, Danskin showed that

Dzf
*(0) = win z V

~
f(x,o) . (6.1)

xCS(0)

4
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Relating our hypotheses to Danskin’s construct, we first note the

equivalence of our assumption of the uniform compactness of R(c) for

e near C = 0, and the assumption that the feasible region is compact

if the constraints of P(C) do not depend on C .  To see this, one need

only consider that, in this case, R(c) R(0) for all c and apply

Definition 2.3. In addition , when the feasible region is independent

of c, our development need not consider the perturbed point

x’~ + B(y + ~~) ,  but may be restricted to the point x*CS(0). The

proofs of Theorems 4.1 and 4.2 remain valid in this case by simply

suppressing all reference to the dependence of the constraints on C

and by considering the unperturbed ~ i~nt x~ instead of x~ + B(y + 5~V) .

One is then led to conclude that , analogous to (4.6) and (4.7),

him sup 
f*(~~~ - f*(0) < mm z V f(x,0), and (6.2)

B xcS(0) ~

him inf 
f*(8z) ... f*(o) 

> win z V f(x,0), (6.3)
xcS(0) ~

for any unit vector ZCEk. Thus it follows that , under the stated

conditions, namely the compactness of R and the continuity of f(x ,C)

and V f (x ,c) at £ = 0, our results are consistent with those of

Danskin in tha t they verify the existence of Dzf
*(0) and show (from

(6.2) and (6.3)) that it can be expressed as in (6.1).

Gauvin and Tolle [11] showed, for programs with right—hand side

perturbations, i.e., for programs of the form

4
• 
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mm f(x)
P’(c)

s.t. g
1
(x) > (i—i ,. ..,m),

h~ (x) ~~~~~ (j=l,. .

that although the directional derivative of f~ may not exist, its

limit quotient can be bounded . In particular , they concluded that

if MFCQ holds at each element of S(0) and if R(~) is uniformly compact

- - for c near = 0, the following inequalities are satisfied:

* - * 
m p

lim ~~~~ 
f (~z) — 1 (0) 

.~: 
inf wax ( ~ ~~ — w z~~ ) , (6.4)

B xcS(O) (p,u)CK (x ,0) iCll j=l ~ 
-

and

* p
lim j f  (az) f (0) 

~ ~~ 
mm ( ~~ — u z~~ ) .  (6.5)

xiS(0) (~i ,w)cK(x,0, ‘1—1 j—l ~

Now, from (4.6) and (4.7) we see that the bounds we have given for

the general program P(c) reduce to those in (6.4) and (6.5) respec-

tively for the more restrictive perturbations appearing in P’(c).

In the case of convex programs, the existence of D~f
*(0) assured

by Theorem 4.7, and Its expression as (4.10), corresponds under

slightly different assumptions , with results achieved by Gol’stein
c

[12) and Hogan [15). Theorem 4.7 is a direct extension to the general

perturbed mathematical program of a result given by Gauvin and Tolle

- [11] for right—hand side programs.

In an as yet unpublished manuscript cousnunicated to us by

J. Gauvin, A. Auslender has apparently extended the results of Gauvin

4 and Tolle [11] to problems involving non—differentiable functions. In

L~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
-1
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particular , the bounds noted by (6.4) and (6.5) are obtained for

right—hand side programs in which the problem functions are locally

-‘ Lipschitz and those defining the equality constraints are continuously

differentiable. We are currently studying this result to understand

the relationship between our assumptions and those of Auslender and

to determine if Auslender ’s result extends to the more general pro-

gram P(c).

‘1
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